Package: eurocontrol (via r-universe)

February 7, 2025

Type Package

Title Helper functions for EUROCONTROL useRs

Version 0.1.18

Maintainer Enrico Spinielli <enrico.spinielli@eurocontrol.int>

Description The helper functions in this package are designed to make
it easy, homogeneus and transparent to perform common tasks
usually needed by data analysts and useRs in EUROCONTROL.

License MIT + file LICENSE

Imports cli, DBI, dbplyr, dplyr, forcats, geosphere, lubridate,
magrittr, readr, rlang (>= 0.4.11), stringr, tibble, withr

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Suggests ROracle, roxygen2
Roxygen list(markdown = TRUE)

URL https://eurocontrol.github.io/eurocontrol/,
https://github.com/eurocontrol/eurocontrol

Depends R (>=4.1.0)

Config/pak/sysreqs libicu-dev libx11-dev

Repository https://euctrl-pru.r-universe.dev

RemoteUrl https://github.com/eurocontrol/eurocontrol

RemoteRef HEAD

RemoteSha abff85473e544e71c93ae9b804ea37cb8b5493a5

Contents

aircraft_model
aircraft_type
airlines_tbl L L e

https://eurocontrol.github.io/eurocontrol/
https://github.com/eurocontrol/eurocontrol

2 aircraft_model
airlines_tidy e e e 4
QAITPOTES_0Q . v v v v o e 5
airspace_profiles_tidy Lo 6
airspace_profile_tbl 8
aodf_tbl e 9
aodf_tidy e e 9
db_connection e e e e 11
flights_airspace_profiles_tidy 12
flights_tbl e 13
flights_tidy 14
GEeNETAte_SO0 e e e e e e e e e e 18
iata_season_for_date 19
member_State e e e e e e e e e e e 20
point_profiles_tidy 20
point_profile_tbl 22
SEASOM_IAtA v v e e e e e e e e 23

Index 25

aircraft_model ICAO’s Manufacturer codes

Description

A data frame with the following fields

model_full_name the model full name, e.g. "A-320neo".

manufacturer_code the manufacturer’s code, e.g. "AIRBUS".

designator the model’s designator, e.g. "A20N"

last_updated the date when the data have been last updated, e.g. "2023-05-19".
Usage

aircraft_model
Format

An object of class tb1_df (inherits from tbl, data. frame) with 10438 rows and 4 columns.

aircraft_type 3

aircraft_type ICAO’s Aircraft types

Description
A data frame with the following fields
designator the aircraft type designator, e.g. "A310".
aircraft_description the aircraft description, e.g. "LandPlane".
description the aircraft, e.g. "IT".
wtc the aircraft wake turbulence category, e.g. "M".

engine_count the number pf engines, e.g. "2". Note: this is not a number unfortunately, there is
one model encoded C

engine_type the engine type, e.g. "Jet".
last_updated the date when the data have been last updated, e.g. "2023-05-19".

Usage

aircraft_type

Format

An object of class tb1_df (inherits from tb1, data. frame) with 2719 rows and 7 columns.

airlines_tbl Return a reference to the Airlines table

Description
The returned dbplyr: : tb1l_dbi () is referencing the airlines table in PRISME. You can use dplyr/dbplyr
verbs to filter, join, ... with other datasets.

Usage

airlines_tbl(conn = NULL)

Arguments

conn Database connection or instantiate the default one.

Value

a dbplyr::tbl_dbi() referencing the Oracle table for airlines.

https://www.skybrary.aero/articles/icao-wake-turbulence-category

Note

airlines_tidy

You need to either provide a connection conn that has access to PRU_DEV.V_COVID_DIM_AO or go

with the default which uses PRU_DEYV to establish a db_connection().

Examples

Not run:
arl <- airlines_tbl()
other operations on arl, i.e. filtering,
followed by a collect() to retrieve the concrete data frame
arl_filtered <- arl |>
dplyr::filter (AO_ISO_CTRY_CODE == "IT") |>
collect()

NOTE: you can reuse the connection for other API calls
conn <- arlsrccon

other ops requiring conn
...

IMPORTANT: close the DB connection
DBI::dbDisconnect(conn)

End(Not run)

airlines_tidy Airline info including group affiliation

Description

Airline info including group affiliation

Usage

airlines_tidy(conn = NULL)

Arguments

conn Optional connection to the PRU_DEV schema.

Value
A dbplyr::tbl_dbi() with the following columns:
* AO_CODE: the the ICAO Airline Designator, i.e. ‘OAL’
* AO_NAME: the airline’s name, i.e. ’Olympic’
* AO_GRP_CODE: the airline’s affiliation group code, i.e. ’AEE_GRP’
* AO_GRP_NAME: the airline’s affiliation group, i.e. ’AEGEAN Group’

https://en.wikipedia.org/wiki/List_of_airline_codes

airports_oa 5

e AO_ISO_CTRY_CODE: the ISO2C code of the airline’s country, i.e. "GR’

* EU: (a character) whether the airlines is in a EUROCONTROL’s Member State (full, compre-
hensive or transition plus Kosovo), i.e. "TRUE’

Note

You need to either provide a connection conn that has access to PRUDEV.V_COVID_DIM_AO or go
with the default which uses PRU_DEYV to establish a db_connection().

Examples

Not run:
arls <- airlines_tidy()
other operations on arls, i.e. filtering,
followed by a collect() to retrieve the concrete data frame
arls_filtered <- arls |>
filter(stringr::str_starts("A")) |>
collect()

NOTE: you can reuse the connection for other API calls
conn <- arlssrccon

other ops requiring conn
...

IMPORTANT: close the DB connection
DBI: :dbDisconnect(conn)

End(Not run)

airports_oa retrieve latest airport list from OurAirports

Description

retrieve latest airport list from OurAirports

Usage

airports_oa()

Value

a data frame

6 airspace_profiles_tidy

Examples

Not run:
apts <- airports_oa()

End(Not run)

airspace_profiles_tidy
Provide all airspace profile segments intersecting an interval of inter-
est

Description

The returned dbplyr: :tbl_dbi() includes segments for scheduled and non-scheduled flights tem-
porally intersecting the right-opened interval [wef, til).

General aviation, State, military and sensitive flight are excluded.

Usage
airspace_profiles_tidy(
conn = NULL,
wef,
til,
airspace = "FIR",
profile = "CTFM"
)
Arguments
conn Database connection or instantiate the default one.
wef With EFfect date (included) at Zulu time in a format recognized by lubridate: :as_datetime()
til unTILI date (excluded) at Zulu time in a format recognized by lubridate: :as_datetime()
airspace the type of airspace (default: "FIR’), one of:

* "FIR’ (Flight Information Region)
* 'NAS’ (National Airspace)
* AUA’ (ATC Unit Airspace)
* ’ES’ (Elementary Sector)
profile the model of the trajectory profile (default: ’"CTFM’), one of:
* "FTFM’, Filed Tactical Flight Model
* 'RTFM’, Regulated Tactical Flight Model
e "CTFM’, Current Tactical Flight Model
* "CPF’, Correlated Position reports for a Flight
e "DCT’, Direct route
e *SCR’, Shortest Constrained Route
* "SRR’, Shortest RAD restrictions applied Route
¢ *SUR’, Shortest Unconstrained Route

https://observablehq.com/@openaviation/flight-information-regions
https://ansperformance.eu/definition/flight-models/

airspace_profiles_tidy 7

Value

adbplyr::tbl_dbi() with the following columns

* ID: the so called SAM ID, used internally by PRISME

* SEQ_ID: the sequence number of the segment for the relevant airspace profile
e ENTRY_TIME: the time of entry into the relevant airspace

* ENTRY_LON: the longitude of entry into the relevant airspace

o ENTRY_LAT: the latitude of entry into the relevant airspace

* ENTRY_FL: the flight level of entry into the relevant airspace

* EXIT_TIME: the time of exit out of the relevant airspace

* EXIT_LON: the longitude of exit out of the relevant airspace

o EXIT_LAT: the latitude of exit out of the relevant airspace

* EXIT_FL: the flight level of exit out of the relevant airspace

* AIRSPACE_ID: the airspace ID

* AIRSPACE_TYPE: the airspace type as per airspace input parameter
* MODEL_TYPE: the trajectory model as per profile input parameter

Note

You need to either provide a connection conn that has access to as noted in airspace_profile_tbl()
and flights_tidy() or go with the default which uses PRU_DEYV to establish a db_connection().

Examples

Not run:

ps <- airspace_profiles_tidy(wef = "2023-01-01", til = "2023-04-01")
IMPORTANT: always close the DB connection when done

DBI: :dbDisconnect(pssrccon)

if you re-use DB connections
conn <- eurocontrol::db_connection("PRU_DEV")
ps <- airspace_profiles_tidy(conn = conn)

... do something else with conn

...

then manually close the connection to the DB
DBI: :dbDisconnect(conn)

End(Not run)

8 airspace_profile_tbl

airspace_profile_tbl Return a reference to the Airspace Profile table

Description

The returned dbplyr::tbl_dbi() is referencing the airspace profiles table in PRISME. You can
use dplyr/dbplyr verbs to filter, join, ... with other datasets.

Usage

airspace_profile_tbl(conn = NULL)

Arguments

conn Database connection or instantiate the default one.

Value

a dbplyr::tbl_dbi() referencing the Oracle table for airspace profiles.

Note

You need to either provide a connection conn that has access to FSD.ALL_FT_ASP_PROFILE or go
with the default which uses PRU_DEYV to establish a db_connection().

Examples

Not run:

pp <- airspace_profile_tbl()

other operations on pp, i.e. filtering,

followed by a collect() to retrieve the concrete data frame
IMPORTANT: close the DB connection when done

DBI: :dbDisconnect (ppsrccon)

if you use a DB connection for many different APIs
conn <- eurocontrol::db_connection("PRU_DEV")
pp <- airspace_profile_tbl(conn = conn)

... do something else with conn

...

then manually close the connection to the DB
DBI::dbDisconnect(conn)

End(Not run)

aodf _tbl 9

aodf_tbl Return a reference to the Airport Operator Data Flow table

Description
The returned dbplyr: :tbl_dbi() is referencing the airport operator data flow table in PRISME.
You can use dplyr/dbplyr verbs to filter, join, ... with other datasets.

Usage
aodf_tbl(conn = NULL)

Arguments

conn Database connection or instantiate the default one.

Value

adbplyr::tbl_dbi() referencing the Oracle table for airport operator data flow.

Note

You need to either provide a connection conn that has access to SWH_FCT . FAC_APDS_FLIGHT_IR691
or go with the default which uses PRU_ATMAP to establish a db_connection().

Examples

Not run:

aodf <- aodf_tbl()

...

IMPORTANT: close the DB connection when done with ~aodf"”
DBI::dbDisconnect(aodfsrccon)

End(Not run)

aodf_tidy Extract a clean airport operator data flow list in an interval

Description
The returned dbplyr: :tbl_dbi() includes movements information in the interval [wef, til).
NOTE: it can only cover ONE month at a time

Usage

aodf_tidy(conn = NULL, wef, til)

10 aodf_tidy

Arguments
conn Database connection or instantiate the default one.
wef With EFfect date (included) at Zulu time in a format recognized by lubridate: :as_datetime()
til unTILI date (excluded) at Zulu time in a format recognized by lubridate: :as_datetime()
Value

A dbplyr::tbl_dbi() with the following columns:

* APDS_ID: the airport operator dataflow unique record id.

¢ ID: the so called SAM ID, used internally by PRISME

* AP_C_FLTID: flight identifier (aource Airport)

* AP_C_FLTRUL: which sets of regulations the flight is operated under. Possible values are:

e IFR for IFR
¢ VFR for VFR

¢ NA if unknown

* AP_C_REG: the aircraft registration (with spaces, dashes, ... stripped), e.g. GEUUU.
* ADEP_ICAO: (ICAO code of the) Aerodrome of DEParture (source airport).

* ADES_ICAO: (ICAO code of the) Aerodrome of DEStination (source airport).

* SRC_PHASE: flight phase. DEP=departure, ARR=arrival.

e MVT_TIME_UTC: (best available) movement time (takeoff if SRC_PHASE = DEP, landing if
SRC_PHASE = ARR).

* BLOCK_TIME_UTC: Block time (off-block if SRC_PHASE = DEP, in-block if SRC_PHASE =
ARR).

e SCHED_TIME_UTC: scheduled time (of departure if SRC_PHASE = DEP, of arrival if SRC_PHASE
= ARR; source airport).

e ARCTYP: (best available) the ICAO code for the aircraft type, for example A21N for Airbus
A321neo.

* AP_C_RWY: Runway ID (of departure if SRC_PHASE = DEP, of arrival if SRC_PHASE = ARR;
source airport).

e AP_C_STND: Stand ID (of departure if SRC_PHASE = DEP, of arrival if SRC_PHASE = ARR;
source airport).

* C40_CROSS_TIME: time of first (last) crossing at 40 NM from ARP for departure (arrival).
* C40_CROSS_LAT: latitude of first (last) crossing at 40 NM from ARP for departure (arrival).

* C40_CROSS_LON: longitude of first (last) crossing at 40 NM from ARP for departure (ar-
rival).

* C40_CROSS_FL.: flight level of first (last) crossing at 40 NM from ARP for departure (ar-
rival).

* C40_BEARING: bearing of first (last) crossing at 40 NM from ARP for departure (arrival).

* C100_CROSS_TIME: time of first (last) crossing at 100 NM from ARP for departure (arrival).

https://en.wikipedia.org/wiki/Aircraft_registration
https://observablehq.com/@openaviation/airports
https://observablehq.com/@openaviation/airports
https://www.icao.int/publications/doc8643/pages/search.aspx

db_connection 11

* C100_CROSS_LAT: latitude of first (last) crossing at 100 NM from ARP for departure (ar-
rival).

* C100_CROSS_LON: longitude of first (last) crossing at 100 NM from ARP for departure
(arrival).

* C100_CROSS_FL: flight level of first (last) crossing at 100 NM from ARP for departure
(arrival).

* C100_BEARING: bearing of first (last) crossing at 100 NM from ARP for departure (arrival).

Note

You need to either provide a connection conn that has access to SWH_FCT . FAC_APDS_FLIGHT_IR691,
or go with the default which uses PRU_ATMAP to establish a db_connection().

Examples

Not run:

my_aodf <- aodf_tidy(wef = "2023-01-01", til = "2023-01-02")
...

DBI: :dbDisconnect(my_aodfsrccon)

End(Not run)

db_connection Provide a connection to the relevant Oracle database

Description

Provide a connection to the relevant Oracle database

Usage

db_connection(schema = "PRU_PROD")

Arguments

schema the Oracle DB schema to connect to.

Value
A connection to a database (specifically an implementation of DBI::DBIConnection for an Oracle
database.)

Note

The schema is in fact the prefix of the environment variables where the credentials are stored, like
<schema>_USR, <schema>_PWD and <schema>_DBNAME. Possible values for schema are PRU_PROD,
PRU_DEV, PRU_TEST, ...

12 flights_airspace_profiles_tidy

Examples

Not run:

conn <- db_connection()

... perform other API operations re-using the same connection
...

DBI::dbDisconnect(conn)

End(Not run)

flights_airspace_profiles_tidy

Extract the flights list for the airspace profile segments intersecting an
interval of interest

Description

The returned dbplyr::tbl_dbi() includes scheduled and non-scheduled flights whose airspace
segments temporally intersecting the right-opened interval [wef, til). General aviation, State,
military and sensitive flight are excluded.

Usage
flights_airspace_profiles_tidy(
conn = NULL,
wef,
til,
airspace = "FIR",
profile = "CTFM"
)
Arguments
conn Database connection or instantiate the default one.
wef With EFfect date (included) at Zulu time in a format recognized by lubridate: :as_datetime()
til unTILI date (excluded) at Zulu time in a format recognized by lubridate: :as_datetime()
airspace the type of airspace (default: *FIR’), one of:
* "FIR’ (Flight Information Region)
* 'NAS’ (National Airspace)
* "AUA’ (ATC Unit Airspace)
* 'ES’ (Elementary Sector)
profile the model of the trajectory profile (default: ’"CTFM’), one of:

* "FTFM’, Filed Tactical Flight Model
* 'RTFM’, Regulated Tactical Flight Model
e "CTFM’, Current Tactical Flight Model

https://observablehq.com/@openaviation/flight-information-regions
https://ansperformance.eu/definition/flight-models/

flights_tbl 13

"CPF’, Correlated Position reports for a Flight
"DCT’, Direct route

’SCR’, Shortest Constrained Route

’SRR’, Shortest RAD restrictions applied Route
’SUR’, Shortest Unconstrained Route

Value

adbplyr::tbl_dbi() with the same columns as flights_tidy()

Note

You need to either provide a connection conn that has access to as noted in airspace_profile_tbl()
and flights_tidy() or go with the default which uses PRU_DEYV to establish a db_connection().

Examples

Not run:
aa <- flights_airspace_profiles_tidy(wef = "2023-01-01", til = "2023-04-01")

if you re-use DB connections
conn <- eurocontrol::db_connection("PRU_DEV")
flights_airspace_profiles_tidy(conn = conn,
wef = "2023-01-01",
til = "2023-04-01")

... do something else with conn
...

then manually close the connection to the DB
DBI: :dbDisconnect(conn)

End(Not run)

flights_tbl Return a reference to the Flights table

Description

The returned dbplyr: : tb1l_dbi () is referencing the flights table in PRISME. You can use dplyr/dbplyr
verbs to filter, join, ... with other datasets.

Usage
flights_tbl(conn = NULL)

Arguments

conn Database connection or instantiate the default one.

14 flights_tidy

Value

a dbplyr::tbl_dbi() object referencing the Oracle table for flights.

Note

You need to either provide a connection conn that has access to SWH_FCT.V_FAC_FLIGHT_MS or go
with the default which uses PRU_DEYV to establish a db_connection(). Market Segment is not
available before 2004.

Examples

Not run:
flt <- flights_tbl()
other operations on flt, i.e. filtering,
followed by a collect() to retrieve the concrete data frame
flt_filtered <- flt |>
filter (TO_DATE("2023-06-01 10:00", "YYYY-MM-DD HH24:MI") <= IOBT,
IOBT < TO_DATE("2023-06-02 10:30", "YYYY-MM-DD HH24:MI")) |>
collect()

NOTE: you can reuse the connection for other API calls
conn <- fltsrccon

other ops requiring conn
...

IMPORTANT: close the DB connection
DBI::dbDisconnect(conn)

End(Not run)

flights_tidy Extract a clean flights list in an interval

Description

The returned dbplyr::tbl_dbi() includes scheduled and non-scheduled flight departing in the
right-opened interval [wef, til).

Defaults values will assure that General aviation, State, military and sensitive flight will excluded.
They can be retrieved via the other function call arguments in case of need.

Usage

flights_tidy(
conn = NULL,
wef,

flights_tidy 15

til,
icao_f1lt_types = c("S", "N"),

ids

= NULL,

include_sensitive = FALSE,
include_military = FALSE,
include_head = FALSE

)
Arguments
conn Database connection or instantiate the default one.
wef With EFfect date (included) at Zulu time in a format recognized by lubridate: :as_datetime()
til unTILI date (excluded) at Zulu time in a format recognized by lubridate: :as_datetime()
icao_flt_types the types of flights as described below in ICAO_FLT_TYPE, defaultc('S"', 'N'),
NULL includes all notwithstanding other argument options. When including
military via include_military you should either pass NULL or make sure
"M’ is included
ids list of IDs (aka SAM ID) to return, default NULL for all flights

include_sensitive

include sensitive flights, default FALSE

include_military

include military flights, default FALSE

include_head include Head of State flights, default FALSE

Value

A dbplyr::tbl_dbi() with the following columns (grouped here by flight details, aerodrome de-
tails, aircraft info, aircraft operator info and operational details):

Flight details:

FLT_UID: flight unique id.

ID: the so called SAM 1D, used internally by PRISME
AIRCRAFT_ID: the callsign of the relevant flight, e.g. BAW6VB.
LOBT: Last received Off-Block Time.

IOBT: Initial Off-Block Time.

FLT_RULES (see FPL Item 8): which sets of regulations the flight is operated under. Possible
values are:

— I for IFR
— Vfor VFR
— Y first IFR thereafter VFR
— Z first VFR thereafter IFR
ICAO_FLT_TYPE (see FPL Item 8): flight type. Possible values:
— S for scheduled air service
— N for non-scheduled air service
— G for general aviation

https://www.skybrary.aero/articles/aircraft-call-sign
https://www.skybrary.aero/articles/flight-plan-completion
https://www.skybrary.aero/articles/flight-plan-completion

16

flights_tidy

— M for military (note: filtered out)

— X for other than the preceding categories
RULE_NAME: market segment type as defined on the Market Segment Rules, it can be:
“Mainline”

— “Regional”

- “Low-Cost”

— “Business Aviation”

- “All-Cargo”

— “Charter” (Non-Scheduled)

- “Military”

— “Other”

— "Not classified"
SENSITIVE: *Y" if sensitive
SPECIAL_EXEMPT: reasons for special handling by ATS. One of:

— "AEAP" ATFM exemption approved

- "EMER" emergency

— "FIRE" fire fighting

— "HEAD" flights with Head of State status

— "MEDE" medical evacuation

— "NEXE" not exempted

— "SERE" search & rescue

Aerodrome details:

ADEP: ICAO code of the Aerodrome of DEParture
NAME_ADEP: the (AIU) name of the ADEP airport
COUNTRY_CODE_ADEP: the ISO 2-alpha country code for ADEP
COUNTRY_NAME_ADEP: the country name for ADEP

ADES: ICAO code of the Aerodrome of DEStination (different from ADES_FILED in case of
diversion)

NAME_ADES: the (AIU) name of the ADES airport
COUNTRY_CODE_ADES: the ISO 2-alpha country code for ADES
COUNTRY_NAME_ADES: the country name for ADES

ADES_FILED: ICAO code of the Aerodrome of DEStination filed in the Flight Plan. Note:
it can be different from ADES in case of diversion

NAME_ADES_FILED: the (AIU) name of the ADES_FILED airport
COUNTRY_CODE_ADES_FILED: the ISO 2-alpha country code for ADES_FILED
COUNTRY_NAME_ADES_FILED: the country name for ADES_FILED

Aircraft info:

REGISTRATION: the aircraft registration (with spaces, dashes, ... stripped), e.g. GEUUU.
AIRCRAFT_ADDRESS: the ICAO 24-bit address of the airframe for ADS-B/Mode S broad-
casting.

AIRCRAFT_TYPE_ICAO_ID: the ICAO code for the aircraft type, for example A30B for
an Airbus A-300B2-200.

https://www.eurocontrol.int/publication/market-segment-rules
https://observablehq.com/@openaviation/airports
https://observablehq.com/@openaviation/airports
https://observablehq.com/@openaviation/airports
https://en.wikipedia.org/wiki/Aircraft_registration
https://en.wikipedia.org/wiki/Aviation_transponder_interrogation_modes#ICAO_24-bit_address
https://www.icao.int/publications/doc8643/pages/search.aspx

flights_tidy 17

» WK_TBL_CAT (see FPL Item 9): wake turbulence category, can be
— L LIGHT, i.e. maximum certificated takeoff mass of 7000 kg (15_500 Ibs) or less.

— MMEDIUM, i.e maximum certificated takeoff mass less than 136_000 kg (300_000 1bs),
but more than 7_000 kg (15_500 Ibs)

— HHEAVY, i.e. maximum certificated takeoff mass of 136_000 kg (300_000 lbs) or more
(except those specified as J)

— J SUPER, presently the only the AIRBUS A-380-800

Aircraft operator details:
¢ AIRCRAFT_OPERATOR: the ICAO Airline Designator, i.e. OAL for Olympic
* AO_GRP_CODE: Aircraft Operator group (code), i.e. AEE_GRP
* AO_GRP_NAME: : Aircraft Operator group (name), i.e. AEGEAN Group
¢ AO_ISO_CTRY_CODE: ISO country code for AO

Operational details:
e EOBT_I1: Estimated Off-Block Time for FPL-based (M1) trajectory
¢ ARVT_1: ARriVal Time for FPL-based (M1) trajectory
e TAXI_TIME_I: Taxi time for FPL-based (M1) trajectory
* AOBT_3: Actual Off-Block Time for flown (M3) trajectory
* ARVT_3: ARVival Time for flown (M3) trajectory
e TAXI_TIME_3: Taxi time for flown (M3) trajectory
e RTE_LEN_1: route length (in Nautical Miles) for FPL-based (M1) trajectory
e RTE_LEN_3: route length (in Nautical Miles) for for flown (M3) trajectory
e FLT_DUR_1: route duration (in minutes) for FPL-based (M1) trajectory
e FLT_DUR_3: route length (in minutes) for flown (M3) trajectory
e FLT_TOW: takeoff weight

Note

You need to either provide a connection conn that has access to SWH_FCT.DIM_FLIGHT_TYPE_RULE
(for FLT_RULES), PRUDEV . V_COVID_DIM_AO (for aircraft and aircraft group info) and SWH_FCT.V_FAC_FLIGHT_MS
(for market segment info) or go with the default which uses PRU_DEV to establish a db_connection().

Examples

Not run:
flts <- flights_tidy(wef = "2023-01-01", til = "2023-01-05")
other operations on flts, i.e. filtering,
followed by a collect() to retrieve the concrete data frame
flts_filtered <- flts |>
filter (TO_DATE("2023-06-01 10:00", "YYYY-MM-DD HH24:MI") <= IOBT,
IOBT < TO_DATE("2023-01-02 10:30", "YYYY-MM-DD HH24:MI")) |>
collect()

NOTE: you can reuse the connection for other API calls
conn <- fltssrccon

https://www.skybrary.aero/articles/flight-plan-completion
https://en.wikipedia.org/wiki/List_of_airline_codes

other ops requiring conn
...

IMPORTANT: close the DB connection

DBI::dbDisconnect(conn)

End(Not run)

generate_so6

generate_so6

Export trajectory profiles to SO6 format

Description

The data frame for point trajectories needs to have the following columns:

Name
FLIGHT_ID
TIME_OVER
LONGITUDE
LATITUDE
FLIGHT_LEVEL
POINT_ID
AIR_ROUTE
LOBT
SEQ_ID
CALLSIGN
REGISTRATION
MODEL_TYPE
AIRCRAFT_TYPE
AIRCRAFT_OPERATOR
ADEP
ADES

Usage

generate_so6(trajectory)

Arguments

trajectory

Value

Description

Flight ID

Time over point

Longitude (decimal degrees)
Latitude (decimal degrees)
Flight level

Point ID or NO_POINT

Air route or NO_ROUTE

Last Off-block Time

Positions’ sequence number
Flight call sign

Aircraft registration

Aircraft model

Aircraft ICAO type

Aircraft operator

Departing aerodrome (ICAO) ID
Destination aerodrome (ICAO) ID

A data frame for point profile trajectories.

A data frame for trajectories in SO6 format.

Type
nt
datetime
double
double
int

char
char
datetime
int

char
char
char
char
char
char
char

iata_season_for_date

Examples

Not run:
conn <- eurocontrol::db_connection("PRU_DEV")
pf <- point_profiles_tidy(conn = conn,
wef = "2020-01-01",
til = "2020-01-10") |>
generate_so6()

... do something else with conn

...

then manually close the connection to the DB
DBI::dbDisconnect(conn)

generate_so6(trj)

End(Not run)

iata_season_for_date Return the corresponding IATA season for a date

Description

Return the corresponding IATA season for a date

Usage

iata_season_for_date(date)

Arguments

date a date

Value

the name of the IATA season in the form summer-yyyy

Examples

Not run:
season_iata("2024-04-01")

End(Not run)

20 point_profiles_tidy

member_state EUROCONTROL’s Member States

Description
A data frame with the following fields

name the country name, e.g. "Italy"

iso3c the 3-letter ISO code, e.g. "ITA"

iso2c the 2-letter ISO code, e.g. "IT"

icao the 2-letter ICAO code, e.g. "LI"

iso3n the 3-digits ISO code, e.g. "380"

date the date of status code, e.g. 1996-04-01

status the status code, e.g. "M" (M Member State, C Comprehensive Agreement State, T Transi-
tional State, NA for Kosovo)

These are useful to grab the right spatial polygons in case of need.

Usage

member_state

Format

An object of class tbl_df (inherits from tbl, data. frame) with 45 rows and 7 columns.

Note

Kosovo is also included in the list.

point_profiles_tidy Export point profile from NM trajectories

Description

Extract NM point profile trajectories from PRISME database. When a bbox is defined, we return
only the (full) point profiles for the flights flying thru the region.

Usage
point_profiles_tidy(
conn = NULL,
wef,

til = lubridate::today(tzone = "UTC"),
profile = "CTFM",
bbox = NULL

point_profiles_tidy 21

Arguments
conn Database connection or instantiate the default one.
wef With EFfect date (included) at Zulu time in a format recognized by lubridate: :as_datetime()
til unTILI date (excluded) at Zulu time in a format recognized by lubridate: :as_datetime()
profile the model of the trajectory profile (default: ’"CTFM’), one of:
* "FTFM’, Filed Tactical Flight Model
* '"RTFM’, Regulated Tactical Flight Model
* 'CTFM’, Current Tactical Flight Model
* 'CPF’, Correlated Position reports for a Flight
e "DCT’, Direct route
¢ ’SCR’, Shortest Constrained Route
* 'SRR’, Shortest RAD restrictions applied Route
* 'SUR’, Shortest Unconstrained Route
bbox (Optional) axis aligned bounding box (xmin, ymin, xmax, ymax)
Value

a dataframe representing a flight trajectory with the following columns:

* FLIGHT_ID: a unique identifier for the flight

 TIME_OVER: the time over llon/lat

* LONGITUDE: the longitude

* LATITUDE: the latitude

e FLIGHT_LEVEL: the flight level

e POINT_ID: the published point ID CNO_POINT’ otherwise)

¢ AIR_ROUTE: the air rout name " DCT’ otherwise)

* LOBT: the last off-block time

» SEQ_ID: the progressive sequence number in the trajectory points
* CALLSIGN: the callsign of the flight

* REGISTRATION: the aircraft registration

* MODEL_TYPE: the trajectory model as per profile input parameter
* AIRCRAFT_TYPE: the ICAO aircraft type

* AIRCRAFT_OPERATOR: the flight operator

* ICAO24: the ICAO 24-bit address of the aircraft

* ADEP: the Aerodrom of Departure

e ADES: the aerodrome of Destination

Note

You need to either provide a connection conn that has access to as noted in airspace_profile_tbl()
and flights_tidy() or go with the default which uses PRU_DEYV to establish a db_connection().

https://ansperformance.eu/definition/flight-models/
https://ansperformance.eu/acronym/fl/
https://ansperformance.eu/acronym/lobt/
https://w.wiki/9XN6
https://w.wiki/9XN7

22 point_profile_tbl

Examples

Not run:

export 1 day of NM (planned) trajectories

pf1 <- point_profiles_tidy(wef = "2019-07-14",
til = "2019-07-15",
profile = "FTFM")

export 2 hours of NM (flown) trajectories
pf2 <- point_profiles_tidy(wef = "2019-07-14 22:00",
til = "2019-07-15")

export 1 day of NM (flown) trajectories

pf3 <- point_profiles_tidy(wef = "2019-07-14",
til = "2019-07-15",
profile = "CTFM")

export all CTFM trajectories within a bounding box 4@ NM around EDDF
bb <- c(xmin = 7.536746, xmax = 9.604390, ymin = 49.36732, ymax = 50.69920)
pf4 <- point_profiles_tidy(wef = "2019-01-01 00:00",

til "2019-01-02 00:00",

bbox = bb)

if you re-use DB connections
conn <- eurocontrol::db_connection("PRU_DEV")
pf <- point_profiles_tidy(conn = conn,
wef = "2020-01-01",
til = "2020-01-10")

... do something else with conn

...

then manually close the connection to the DB
DBI: :dbDisconnect(conn)

End(Not run)

point_profile_tbl Return a reference to the Point Profile table

Description
The returned dbplyr: :tbl_dbi() is referencing the point profiles table in PRISME. You can use
dplyr/dbplyr verbs to filter, join, ... with other datasets.

Usage

point_profile_tbl(conn = NULL)

season_iata 23

Arguments

conn Database connection or instantiate the default one.

Value

adbplyr::tbl_dbi() referencing the Oracle table for point profiles.

Note

You need to either provide a connection conn that has access to FSD.ALL_FT_POINT_PROFILE or
go with the default which uses PRU_DEV to establish a db_connection().

Examples

Not run:
pt <- point_profile_tbl()

if you re-use DB connections
conn <- eurocontrol::db_connection("PRU_DEV")
pt <- point_profile_tbl(conn = conn)

... do something else with conn

...

then manually close the connection to the DB
DBI::dbDisconnect(conn)

End(Not run)

season_iata return the interval for an IATA season

Description

IATA summer season begins on the last Sunday of March and ends on the last Saturday of October.
IATA winter season begins on the last Sunday of October and ends Saturday of before next year
summer season.

Usage

season_iata(year, season = "summer")
Arguments

year the year for the season definition

season the (northern hemisphere) season, either "summer" (default) or "winter"
Value

an interval for the season definition, end/start dates are inclusive

24

Examples

Not run:
season_iata(2019)

End(Not run)

season_iata

Index

+ datasets
aircraft_model, 2
aircraft_type, 3
member_state, 20

* read/export
point_profiles_tidy, 20

aircraft_model, 2
aircraft_type, 3

airlines_tbl, 3
airlines_tidy, 4

airports_oa, 5
airspace_profile_tbl, 8
airspace_profile_tbl(), 7, 13,21
airspace_profiles_tidy, 6
aodf_tbl, 9

aodf_tidy, 9

db_connection, 11

db_connection(), 4, 5,7-9, 11,13, 14, 17,
21,23

DBI: :DBIConnection, /1

dbplyr::tbl_dbi(), 3, 4, 6-10, 12-15, 22, 23

flights_airspace_profiles_tidy, 12
flights_tbl, 13

flights_tidy, 14
flights_tidy(), 7, 13,21

generate_so6, 18
iata_season_for_date, 19

lubridate: :as_datetime(), 6, 10, 12, 15,
21

member_state, 20

point_profile_tbl, 22
point_profiles_tidy, 20

season_iata, 23

25

	aircraft_model
	aircraft_type
	airlines_tbl
	airlines_tidy
	airports_oa
	airspace_profiles_tidy
	airspace_profile_tbl
	aodf_tbl
	aodf_tidy
	db_connection
	flights_airspace_profiles_tidy
	flights_tbl
	flights_tidy
	generate_so6
	iata_season_for_date
	member_state
	point_profiles_tidy
	point_profile_tbl
	season_iata
	Index

