--- title: "Simple and Exact Solutions to Position Calculation" author: "Enrico Spinielli" date: "`r Sys.Date()`" output: bookdown::html_document2: toc: true toc_depth: 2 number_sections: false fig_caption: true pkgdown: as_is: true references: - id: gade2010 title: A Nonsingular Horizontal Position Representation author: - family: Gade given: Kenneth container-title: The Journal of Navigation volume: 63 URL: 'https://www.navlab.net/Publications/A_Nonsingular_Horizontal_Position_Representation.pdf' issue: 03 page: 395-417 type: article-journal issued: year: 2010 month: 7 link-citations: yes vignette: > %\VignetteIndexEntry{Simple and Exact Solutions to Position Calculation} %\VignetteKeyword{Geodesic} %\VignetteKeyword{Position calculation} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", out.width = "220px", fig.align = 'center' ) library(png) library(nvctr) ``` This vignette contains solutions to various geographical position calculations. It is inspired and follows the 10 examples given at https://www.navlab.net/nvector/ . Most of the content is based on [@gade2010]. The color scheme in the Figures is as follows: * $\mathbf{\color{red}{Red}}$: Given * $\mathbf{\color{green}{Green}}$: Find this ## Example 1: A and B to delta {#example-01} Given two positions $A$ and $B$, find the exact vector from $A$ to $B$ in meters north, east and down, and find the direction (azimuth/bearing) to $B$, relative to north. Use WGS-84 ellipsoid. ```{r example-01-fig,fig.cap='A and B to delta.',fig.pos='hbt',fig.width=4,echo=FALSE,warning=FALSE,message=FALSE} knitr::include_graphics("ex1img.png") ``` ### Solution Transform the positions $A$ and $B$ to (decimal) degrees and depths: ```{r example-01-init} # Position A: lat_EA <- rad(1) lon_EA <- rad(2) z_EA <- 3 # Position B: lat_EB <- rad(4) lon_EB <- rad(5) z_EB <- 6 ``` **Step 1**: Convert to n-vectors, $\mathbf{n}_{EA}^E$ and $\mathbf{n}_{EB}^E$ ```{r example-01-step01} (n_EA_E <- lat_lon2n_E(lat_EA, lon_EA)) (n_EB_E <- lat_lon2n_E(lat_EB, lon_EB)) ``` **Step 2**: Find $\mathbf{p}_{AB}^E$ (delta decomposed in E). WGS-84 ellipsoid is default ```{r example-01-step02} (p_AB_E <- n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA, z_EB)) ``` **Step 3**: Find $\mathbf{R}_{EN}$ for position $A$ ```{r example-01-step03} (R_EN <- n_E2R_EN(n_EA_E)) ``` **Step 4**: Find $\mathbf{p}_{AB}^N = \mathbf{R}_{NE} \mathbf{p}_{AB}^E$ ```{r example-01-step04} # (Note the transpose of R_EN: The "closest-rule" says that when # decomposing, the frame in the subscript of the rotation matrix that is # closest to the vector, should equal the frame where the vector is # decomposed. Thus the calculation R_NE*p_AB_E is correct, since the vector # is decomposed in E, and E is closest to the vector. In the above example # we only had R_EN, and thus we must transpose it: base::t(R_EN) = R_NE) (p_AB_N <- base::t(R_EN) %*% p_AB_E %>% as.vector()) ``` The vector $\mathbf{p}_{AB}^N$ connects A to B in the North-East-Down framework. The line-of-sight distance, in meters, from A to B is ```{r line-of-sight_distance} (los_distance <- norm(p_AB_N, type = "2")) ``` while the [altitude](https://en.wikipedia.org/wiki/Horizontal_coordinate_system) (elevation above the horizon), in decimal degrees, is ```{r elevation} (elevation <- atan2(-p_AB_N[3], p_AB_N[2]) %>% deg()) ``` **Step 5**: Also find the direction to $B$ ([azimuth](https://en.wikipedia.org/wiki/Azimuth)), in decimal degrees, relative to true North ```{r example-01-step05} (azimuth <- atan2(p_AB_N[2], p_AB_N[1]) %>% # positive angle about down-axis deg()) ``` ## Example 2: B and delta to C {#example-02} A radar or sonar attached to a vehicle $B$ (**B**ody coordinate frame) measures the distance and direction to an object $C$. We assume that the distance and two angles (typically bearing and elevation relative to $B$) are already combined to the vector $\mathbf{p}_{BC}^B$ (i.e. the vector from $B$ to $C$, decomposed in B). The position of $B$ is given as $\mathbf{n}_{EB}^E$ and $z_{EB}$, and the orientation (attitude) of $B$ is given as $\mathbf{R}_{NB}$ (this rotation matrix can be found from roll/pitch/yaw by using `zyx2R`). Find the exact position of object $C$ as n-vector and depth ($\mathbf{n}_{EC}^E$ and $z_{EC}$), assuming Earth ellipsoid with semi-major axis $a$ and flattening $f$. For WGS-72, use $a = 6378135~\mathrm{m}$ and $f = \dfrac{1}{298.26}$. ```{r example-02-fig,fig.cap='B and delta to C.',fig.pos='hbt',fig.height=4,echo=FALSE,warning=FALSE,message=FALSE} knitr::include_graphics("ex2img.png") ``` ### Solution ```{r example-02-init} p_BC_B <- c(3000, 2000, 100) # Position and orientation of B is given: (n_EB_E <- unit(c(1, 2, 3))) # unit() to get unit length of vector z_EB <- -400 (R_NB <- zyx2R(rad(10),rad(20),rad(30))) # the three angles are yaw, pitch, and roll # A custom reference ellipsoid is given (replacing WGS-84): # (WGS-72) a <- 6378135 f <- 1 / 298.26 ``` **Step 1**: Find $\mathbf{R}_{EN}$ ```{r example-02-step01} (R_EN <- n_E2R_EN(n_EB_E)) ``` **Step 2**: Find $\mathbf{R}_{EB}$ from $\mathbf{R}_{EN}$ and $\mathbf{R}_{NB}$ ```{r example-02-step02} (R_EB <- R_EN %*% R_NB) # Note: closest frames cancel ``` **Step 3**: Decompose the delta vector $\mathbf{p}_{BC}^B$ in E ```{r example-02-step03} (p_BC_E <- R_EB %*% p_BC_B) # no transpose of R_EB, since the vector is in B) ``` **Step 4**: Find the position of $C$, using the functions that goes from one position and a delta, to a new position ```{r example-02-step04} l <- n_EA_E_and_p_AB_E2n_EB_E(n_EB_E, p_BC_E, z_EB, a, f) (n_EB_E <- l[['n_EB_E']]) (z_EB <- l[['z_EB']]) ``` Convert to latitude and longitude, and height ```{r example-02-final} lat_lon_EB <- n_E2lat_lon(n_EB_E) (latitude <- lat_lon_EB[1]) (longitude <- lat_lon_EB[2]) # height (= - depth) (height <- -z_EB) ``` ## Example 3: ECEF-vector to geodetic latitude Position $B$ is given as an “ECEF-vector” $\mathbf{p}_{EB}^E$ (i.e. a vector from E, the center of the Earth, to $B$, decomposed in E). Find the geodetic latitude, longitude and height (`latEB`, `lonEB` and `hEB`), assuming WGS-84 ellipsoid. ```{r example-03-fig,fig.cap='ECEF-vector to geodetic latitude.',fig.pos='hbt',fig.height=4,echo=FALSE,warning=FALSE,message=FALSE} knitr::include_graphics("ex3img.png") ``` Position $B$ is given as $\mathbf{p}_{EB}^E$, i.e. "ECEF-vector" ```{r example-03-init} (p_EB_E <- 6371e3 * c(0.9, -1, 1.1)) # m ``` ### Solution Find n-vector from the p-vector ```{r example-03-step01} l <- p_EB_E2n_EB_E(p_EB_E) (n_EB_E <- l[['n_EB_E']]) (z_EB <- l[['z_EB']]) ``` Convert to latitude and longitude, and height ```{r example-03-final} lat_lon_EB <- n_E2lat_lon(n_EB_E) (latEB <- lat_lon_EB[1]) (lonEB <- lat_lon_EB[2]) # height (= - depth) (hEB <- -z_EB) ``` ## Example 4: Geodetic latitude to ECEF-vector Find the ECEF-vector $\mathbf{p}_{EB}^E$ for the geodetic position $B$ given as latitude $lat_{EB}$, longitude $lon_{EB}$ and height $h_{EB}$. ```{r example-04-fig,fig.cap='Geodetic latitude to ECEF-vector.',fig.pos='hbt',fig.height=4,echo=FALSE,warning=FALSE,message=FALSE} knitr::include_graphics("ex4img.png") ``` ### Solution ```{r example-04-init} lat_EB <- rad(1) lon_EB <- rad(2) h_EB <- 3 ``` **Step 1**: Convert to n-vector ```{r example-04-step01} (n_EB_E <- lat_lon2n_E(lat_EB, lon_EB)) ``` **Step 2**: Find the ECEF-vector p_EB_E ```{r example-04-step02} (p_EB_E <- n_EB_E2p_EB_E(n_EB_E, -h_EB)) ``` ## Example 5: Surface distance {#example-05} Given two positions $A$ $\mathbf{n}_{EA}^E$ and $B$ $\mathbf{n}_{EB}^E$, find the surface distance $s_{AB}$ (i.e. great circle distance). The heights of $A$ and $B$ are not relevant (i.e. if they don’t have zero height, we seek the distance between the points that are at the surface of the Earth, directly above/below $A$ and $B$). Also find the Euclidean distance (chord length) $d_{AB}$ using nonzero heights. Assume a spherical model of the Earth with radius $r_{Earth} = 6371~\mathrm{km}$. Compare the results with exact calculations for the WGS-84 ellipsoid. ```{r example-05-fig,fig.cap='Surface distance.',fig.pos='hbt',fig.height=4,echo=FALSE,warning=FALSE,message=FALSE} knitr::include_graphics("ex5img.png") ``` ### Solution ```{r example-05-init} n_EA_E <- lat_lon2n_E(rad(88), rad(0)); n_EB_E <- lat_lon2n_E(rad(89), rad(-170)) r_Earth <- 6371e3 ``` #### Spherical model The great circle distance is given by equations (16) in [@gade2010] (the $\arccos$ is ill conditioned for small angles; the $\arcsin$ is ill-conditioned for angles near $\pi/2$, and not valid for angles greater than $\pi/2$) where $r_{roc}$ is the radius of curvature, i.e. Earth radius + height: $\begin{align} s_{AB} & = r_{roc} \cdot \arccos \!\big(\mathbf{n}_{EA}^E \boldsymbol{\cdot} \mathbf{n}_{EB}^E\big)\\ & = r_{roc} \cdot \arcsin \!\big(\big|\mathbf{n}_{EA}^E \boldsymbol{\times} \mathbf{n}_{EB}^E\big|\big) \tag{16} \end{align}$ The formulation via $\operatorname{atan2}$ of equation (6) in [@gade2010] is instead well conditioned for all angles: $s_{AB} = r_{roc} \cdot \operatorname{atan2}\big(\big|\mathbf{n}_{EA}^E \boldsymbol{\times} \mathbf{n}_{EB}^E\big|, \mathbf{n}_{EA}^E \boldsymbol{\cdot} \mathbf{n}_{EB}^E\big) \tag{6}$ ```{r example-05-spherical} (s_AB <- (atan2(base::norm(pracma::cross(n_EA_E, n_EB_E), type = "2"), pracma::dot(n_EA_E, n_EB_E)) * r_Earth)) ``` The Euclidean distance is given by $d = r_{roc} \cdot \big| \mathbf{n}_{EB}^E - \mathbf{n}_{EA}^E \big|$ ```{r example-05-step02} (d_AB <- base::norm(n_EB_E - n_EA_E, type = "2") * r_Earth) ``` #### Elliptical model (WGS-84 ellipsoid) The distance between $A$ and $B$ ca be calculated via `geosphere` package ```{r example-05-geodesic} geosphere::distGeo(c(0, 88), c(-170, 89)) ``` ## Example 6: Interpolated position Given the position of $B$ at time $t_0$ and $t_1$, $\mathbf{n}_{EB}^E(t_0)$ and $\mathbf{n}_{EB}^E(t_1)$. Find an interpolated position at time $t_i$, $\mathbf{n}_{EB}^E(t_i)$. All positions are given as n-vectors. ```{r example-06-fig,fig.cap='Interpolated position.',fig.pos='hbt',fig.height=4,echo=FALSE,warning=FALSE,message=FALSE} knitr::include_graphics("ex6img.png") ``` ### Solution Standard interpolation can be used directly with n-vector as $$ \mathbf{n}_{EB}^E(t_i) = \operatorname{unit}\Bigg(\mathbf{n}_{EB}^E(t_0) + \frac{t_i − t_0}{t_1 − t_0} \Big(\mathbf{n}_{EB}^E(t_1) − \mathbf{n}_{EB}^E(t_0)\Big)\Bigg) $$ ```{r example-06-init} n_EB_E_t0 <- lat_lon2n_E(rad(89.9), rad(-150)) n_EB_E_t1 <- lat_lon2n_E(rad(89.9), rad(150)) # The times are given as: t0 <- 10 t1 <- 20 ti <- 16 # time of interpolation ``` Using the expression above ```{r exemple-06-interpolation} t_frac <- (ti - t0) / (t1 - t0) (n_EB_E_ti <- unit(n_EB_E_t0 + t_frac * (n_EB_E_t1 - n_EB_E_t0) )) ``` and converting back to longitude and latitude ```{r example-06-conversion} (l <- n_E2lat_lon(n_EB_E_ti) %>% deg()) (latitude <- l[1]) (longitude <- l[2]) ``` ## Example 7: Mean position (center/midpoint) Given three positions $A$, $B$, and $C$ as n-vectors $\mathbf{n}_{EA}^E$, $\mathbf{n}_{EB}^E$, and $\mathbf{n}_{EC}^E$, find the mean position, $M$, as n-vector $\mathbf{n}_{EM}^E$. Note that the calculation is independent of the depths of the positions. ```{r example-07-fig,fig.cap='Mean position (center/midpoint).',fig.pos='hbt',fig.height=4,echo=FALSE,warning=FALSE,message=FALSE} knitr::include_graphics("ex7img.png") ``` ### Solution The (geographical) mean position $B_{GM}$ is simply given equation (17) in [@gade2010] (assuming spherical Earth) $$ \mathbf{n}_{EB_{GM}}^E = \operatorname{unit}\Big( \sum_{i = 1}^{m} \mathbf{n}_{EB_i}^E \Big) \tag{17} $$ and specifically for the three given points $$ \mathbf{n}_{EM}^E = \mathrm{unit}\Big(\mathbf{n}_{EA}^E + \mathbf{n}_{EB}^E + \mathbf{n}_{EC}^E \Big) = \frac{\mathbf{n}_{EA}^E + \mathbf{n}_{EB}^E + \mathbf{n}_{EC}^E}{\Big | \mathbf{n}_{EA}^E + \mathbf{n}_{EB}^E + \mathbf{n}_{EC}^E \Big| } $$ Given the three n-vectors ```{r example-07-init} n_EA_E <- lat_lon2n_E(rad(90), rad(0)) n_EB_E <- lat_lon2n_E(rad(60), rad(10)) n_EC_E <- lat_lon2n_E(rad(50), rad(-20)) ``` find the horizontal mean position ```{r example-07-geographical-mean} (n_EM_E <- unit(n_EA_E + n_EB_E + n_EC_E)) ``` and convert to longitude/latitude ```{r example-07-conversion} (l <- n_E2lat_lon(n_EM_E) %>% deg()) (latitude <- l[1]) (longitude <- l[2]) ``` ## Example 8: A and azimuth/distance to B Given a position $A$ as n-vector $\mathbf{n}_{EA}^E$, an initial direction of travel as an azimuth (bearing), $\alpha$, relative to north (clockwise), and finally the distance to travel along a great circle, $s_{AB}$ find the destination point $B$, given as $\mathbf{n}_{EB}^E$. Use Earth radius $r_{Earth}$. In geodesy this is known as "The first geodetic problem" or "The direct geodetic problem" for a sphere, and we see that this is similar to [Example 2](#example-02), but now the delta is given as an azimuth and a great circle distance. ("The second/inverse geodetic problem" for a sphere is already solved in [Examples 1](#example-01) and [5](#example-05).) ```{r example-08-fig,fig.cap='A and azimuth/distance to B.',fig.pos='hbt',fig.height=4,echo=FALSE,warning=FALSE,message=FALSE} knitr::include_graphics("ex8img.png") ``` ### Solution Given the initial values ```{r example-08-init} n_EA_E <- lat_lon2n_E(rad(80),rad(-90)) azimuth <- rad(200) s_AB <- 1000 # distance (m) r_Earth <- 6371e3 # mean Earth radius (m) ``` **Step 1**: Find unit vectors for north and east as per equations (9) and (10) in [@gade2010] $$ \begin{align} \mathbf{k}_{east}^E & = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \times \mathbf{n}^E \tag{9} \\ \mathbf{k}_{north}^E & = \mathbf{n}^E \times \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \times \mathbf{n}^E \tag{10} \end{align} $$ ```{r} k_east_E <- unit(pracma::cross(base::t(R_Ee()) %*% c(1, 0, 0) %>% as.vector(), n_EA_E)) k_north_E <- pracma::cross(n_EA_E, k_east_E) ``` **Step 2**: Find the initial direction vector $d_E$ ```{r} d_E <- k_north_E * cos(azimuth) + k_east_E * sin(azimuth) ``` **Step 3**: Find $\mathbf{n}_{EB}^E$ ```{r} n_EB_E <- n_EA_E * cos(s_AB / r_Earth) + d_E * sin(s_AB / r_Earth) ``` Convert to longitude/latitude ```{r example-08-conversion} (l <- n_E2lat_lon(n_EB_E) %>% deg()) (latitude <- l[1]) (longitude <- l[2]) ``` ## Example 9: Intersection of two paths Define a path from two given positions (at the surface of a spherical Earth), as the great circle that goes through the two points. Path A is given by $A_1$ and $A_2$, while path B is given by $B_1$ and $B_2$. Find the position C where the two great circles intersect. ```{r example-09-fig,fig.cap='Intersection of two paths.',fig.pos='hbt',fig.height=4,echo=FALSE,warning=FALSE,message=FALSE} knitr::include_graphics("ex9img.png") ``` ### Solution ```{r example-09-init} n_EA1_E <- lat_lon2n_E(rad(50), rad(180)) n_EA2_E <- lat_lon2n_E(rad(90), rad(180)) n_EB1_E <- lat_lon2n_E(rad(60), rad(160)) n_EB2_E <- lat_lon2n_E(rad(80), rad(-140)) # These are from the python version (results are the same ;-) # n_EA1_E <- lat_lon2n_E(rad(10), rad(20)) # n_EA2_E <- lat_lon2n_E(rad(30), rad(40)) # n_EB1_E <- lat_lon2n_E(rad(50), rad(60)) # n_EB2_E <- lat_lon2n_E(rad(70), rad(80)) ``` Find the intersection between the two paths, $\mathbf{n}_{EC}^E$ ```{r} n_EC_E_tmp <- unit(pracma::cross( pracma::cross(n_EA1_E, n_EA2_E), pracma::cross(n_EB1_E, n_EB2_E))) ``` $\mathbf{n}_{{EC}_{tmp}}^E$ is one of two solutions, the other is $-\mathbf{n}_{{EC}_{tmp}}^E$. Select the one that is closest to $\mathbf{n}_{EA_1}^E$, by selecting sign from the dot product between $\mathbf{n}_{{EC}_{tmp}}^E$ and $\mathbf{n}_{EA_1}^E$ ```{r} n_EC_E <- sign(pracma::dot(n_EC_E_tmp, n_EA1_E)) * n_EC_E_tmp ``` Convert to longitude/latitude ```{r example-09-conversion} (l <- n_E2lat_lon(n_EC_E) %>% deg()) (latitude <- l[1]) (longitude <- l[2]) ``` ## Example 10: Cross track distance (cross track error) Path A is given by the two positions $A_1$ and $A_2$ (similar to the previous example). Find the cross track distance $s_{xt}$ between the path A (i.e. the great circle through $A_1$ and $A_2$) and the position $B$ (i.e. the shortest distance at the surface, between the great circle and $B$). Also find the Euclidean distance $d_{xt}$ between $B$ and the plane defined by the great circle. Use Earth radius $6371~\mathrm{km}$. ```{r example-10-fig,fig.cap='Cross track distance (cross track error).',fig.pos='hbt',fig.height=4,echo=FALSE,warning=FALSE,message=FALSE} knitr::include_graphics("ex10img.png") ``` ### Solution Given ```{r} n_EA1_E <- lat_lon2n_E(rad(0), rad(0)) n_EA2_E <- lat_lon2n_E(rad(10),rad(0)) n_EB_E <- lat_lon2n_E(rad(1), rad(0.1)) r_Earth <- 6371e3 # mean Earth radius (m) ``` Find the unit normal to the great circle between n_EA1_E and n_EA2_E as shown in the Figure \@ref(fig:solution-10-fig). ```{r} c_E <- unit(pracma::cross(n_EA1_E, n_EA2_E)) ``` ```{r solution-10-fig, fig.cap='Vectors for cross track distance calculation.', fig.pos='hbt', fig.height=4, echo=FALSE, warning=FALSE, message=FALSE} knitr::include_graphics("solution10img.png") ``` Find the great circle cross track distance ```{r} (s_xt <- (acos(pracma::dot(c_E, n_EB_E)) - pi / 2) * r_Earth) ``` Find the Euclidean cross track distance ```{r} (d_xt <- -pracma::dot(c_E, n_EB_E) * r_Earth) ``` ## Example 11: Cross track intersection Path A is given by the two positions $A_1$ and $A_2$ (similar to the previous example). Find the cross track intersection point $C$ between the path A (i.e. the great circle through $A_1$ and $A_2$) and the position $B$, i.e. the shortest distance point at the surface, between the great circle and $B$. ```{r example-11-fig,fig.cap='Cross track intersection.',fig.pos='hbt',fig.height=4,echo=FALSE,warning=FALSE,message=FALSE} knitr::include_graphics("ex11img.png") ``` ### Solution Given (note that $B$ doesn't necessarily need to lie in between $A_1$ and $A_2$ as per Figure above) ```{r} n_EA1_E <- lat_lon2n_E(rad(0), rad(3)) n_EA2_E <- lat_lon2n_E(rad(0),rad(10)) n_EB_E <- lat_lon2n_E(rad(-1), rad(-1)) ``` Find the normal to the great circle between n_EA1_E and n_EA2_E: ```{r} n_EN_E <- unit(pracma::cross(n_EA1_E, n_EA2_E)) ``` Find the intersection points (one antipodal to the other): ```{r} n_EC_E_tmp <- unit( pracma::cross( n_EN_E, pracma::cross(n_EN_E, n_EB_E) ) ) ``` Choose the one closest to B: ```{r} n_EC_E <- sign(pracma::dot(n_EC_E_tmp, n_EB_E)) * n_EC_E_tmp ``` Convert to longitude/latitude ```{r example-11-conversion} (l <- n_E2lat_lon(n_EC_E) %>% deg()) (latitude <- l[1]) (longitude <- l[2]) ``` # References